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Ilcp+ I rcpImaging of 

ferromagnetic domains:
 Circular Dichroism 

threshold imaging 
 No x-ray source or spin 

filtering needed
 High spatial and 

temporal resolution
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Energy scans:
 Max. asymmetry 

of ~ 1.5%   
 Constant 

asymmetry from 
EF to EB = 1 eV  

 Best figure of 
merit at 
EB = 0.6 eV

In-plane domains:
 Distinction between 

collinear magnetization 
directions

 Domain walls along 
high symmetry 
directions or pinned to 
defects

 Large domains allow  
for k-space imaging

Energy resolved k-space 
imaging:
 Comparison between 

measurement (top row) 
and omni calculations 
(bottom row) 

 Measured on one domain 
only → electrons stem 
from homogeneously  
magnetized area

 Switch of asymmetry sign 
at EB = 0.2 eV 

 Asymmetry in off-axis 
configuration orders of 
magnitude larger than in 
integrated mode 
→ drastic 
improvements of 
sensitivity of the 
technique

Distinction between spin-orbit 
(SO) and exchange 
contribution:
 Apol representing SO 

contribution (top)
 Amag representing magnetic 

contribution (bottom) 
→ distinctly different 
asymmetry in k-space

 Difference gives Aex
 Explained by switch from 

majority to minority band 
photoemission channel 
→ further theoretical data 

needed 

[1,2]
 IMPULSE, Clark MXR fiber laser, 1.23 MHz, 20W
 Double noncollinear optical parametric amplifier (double NOPA)

fs fiber 
laser 

1.2 MHz

PEEM / ARPES

 

Wedge

Off-axis threshold laser-PEEM

 Asymmetry: 0.37%

Explained by Kerr-
like mechanism 

20 µm 7 µm 2 µm

w ~ 90 nm

Γ

[4]

Summary
 Threshold MCD imaging of in-plane and out-of-plane domain at nm spatial resolution 
 Consequent application of group theory approach correctly describes photoemission
 Drastically increased asymmetries in off-axis geometry → laser measurements
 Deconvolute spin-orbit and exchange contribution via different asymmetry modes

[5]

MLD PEEM
Knowledge so far: Marx et al. [3]: Magnetic Linear Dichroism in threshold PEEM

Now: Group theory approach

Grazing Incidence Normal Incidence 

Increased magnetic contrast
 Placing an aperture in the back-focal plane in the region 

of maximum exchange asymmetry gives increase in 
magnetic contrast in real space (up to 6% total) 
→ This enables laser measurements!

 Additionally, choosing the right k-space region, the 
sensitivity to different magnetization directions can be 
tuned

Exchange asymmetry calculation for Fe 
magnetized in x-direction 

(NI excitation, hv = 5.2 eV, EB = 0.4 eV)

The symmetry argument explained on 
the left only gives an intuitive answer 

for high-symmetry, “on-axis” 
configurations! If you measure off-

axis, a lot more is going on!

Momentum-space analysis
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E 1 0 1 -1 1
σxz -1 0 -1 -1 1
σyz 1 0 -1 1 1
C2 1 0 1 1 1

Mx My Pz kx kz

E 0 1 1 -1 1
σxz 0 1 -1 -1 1
σyz 0 -1 -1 1 1
C2 0 -1 1 1 1

Magnetic lateral resolution < 90 nm

Normal Incidence
High symmetry of 
NI config. allows 
“magnetometronic” 
distinction between 
in-plane and out-
of-plane 
components of M 

Imaging of 
ferromagnetic domains:
 Circular Dichroism 

threshold imaging 
 No x-ray source or spin 

filtering needed
 High spatial and 

temporal resolution

Imaging of 
ferromagnetic domains:
 Circular Dichroism 

threshold imaging 
 No x-ray source or spin 

filtering needed
 High spatial and 

temporal resolution
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